pattern   transaction management   sagas   service collaboration   implementing commands  

Pattern: Saga

Want to learn more about this pattern?

Take a look at my self-paced, online bootcamp that teaches you how to use the Saga, API Composition, and CQRS patterns to design operations that span multiple services.

The regular price is $395/person but use coupon ILFJODYS to sign up for $95 (valid until March 12, 2024)

Context

You have applied the Database per Service pattern. Each service has its own database. Some business transactions, however, span multiple service so you need a mechanism to implement transactions that span services. For example, let’s imagine that you are building an e-commerce store where customers have a credit limit. The application must ensure that a new order will not exceed the customer’s credit limit. Since Orders and Customers are in different databases owned by different services the application cannot simply use a local ACID transaction.

Problem

How to implement transactions that span services?

Forces

  • 2PC is not an option

Solution

Implement each business transaction that spans multiple services as a saga. A saga is a sequence of local transactions. Each local transaction updates the database and publishes a message or event to trigger the next local transaction in the saga. If a local transaction fails because it violates a business rule then the saga executes a series of compensating transactions that undo the changes that were made by the preceding local transactions.

There are two ways of coordination sagas:

  • Choreography - each local transaction publishes domain events that trigger local transactions in other services
  • Orchestration - an orchestrator (object) tells the participants what local transactions to execute

Example: Choreography-based saga

An e-commerce application that uses this approach would create an order using a choreography-based saga that consists of the following steps:

  1. The Order Service receives the POST /orders request and creates an Order in a PENDING state
  2. It then emits an Order Created event
  3. The Customer Service’s event handler attempts to reserve credit
  4. It then emits an event indicating the outcome
  5. The OrderService’s event handler either approves or rejects the Order

Example: Orchestration-based saga

An e-commerce application that uses this approach would create an order using an orchestration-based saga that consists of the following steps:

  1. The Order Service receives the POST /orders request and creates the Create Order saga orchestrator
  2. The saga orchestrator creates an Order in the PENDING state
  3. It then sends a Reserve Credit command to the Customer Service
  4. The Customer Service attempts to reserve credit
  5. It then sends back a reply message indicating the outcome
  6. The saga orchestrator either approves or rejects the Order

Resulting context

This pattern has the following benefits:

  • It enables an application to maintain data consistency across multiple services without using distributed transactions

This solution has the following drawbacks:

  • The programming model is more complex. For example, a developer must design compensating transactions that explicitly undo changes made earlier in a saga.

There are also the following issues to address:

  • In order to be reliable, a service must atomically update its database and publish a message/event. It cannot use the traditional mechanism of a distributed transaction that spans the database and the message broker. Instead, it must use one of the patterns listed below.

  • A client that initiates the saga, which an asynchronous flow, using a synchronous request (e.g. HTTP POST /orders) needs to be able to determine its outcome. There are several options, each with different trade-offs:

    • The service sends back a response once the saga completes, e.g. once it receives an OrderApproved or OrderRejected event.
    • The service sends back a response (e.g. containing the orderID) after initiating the saga and the client periodically polls (e.g. GET /orders/{orderID}) to determine the outcome
    • The service sends back a response (e.g. containing the orderID) after initiating the saga, and then sends an event (e.g. websocket, web hook, etc) to the client once the saga completes.

Learn more

Example code

The following examples implement the customers and orders example in different ways:


pattern   transaction management   sagas   service collaboration   implementing commands  


Copyright © 2024 Chris Richardson • All rights reserved • Supported by Kong.

About Microservices.io

Microservices.io is brought to you by Chris Richardson. Experienced software architect, author of POJOs in Action, the creator of the original CloudFoundry.com, and the author of Microservices patterns.

Chris helps organizations improve agility and competitiveness through better software architecture. Learn more about his consulting engagements, and training workshops.

PREMIUM CONTENT

Premium content and office hours is now available for paid subscribers at premium.microservices.io.

MICROSERVICES WORKSHOPS

Chris teaches comprehensive workshops for architects and developers that will enable your organization use microservices effectively.

Avoid the pitfalls of adopting microservices and learn essential topics, such as service decomposition and design and how to refactor a monolith to microservices.

Learn more

LEARN about microservices

Chris offers numerous other resources for learning the microservice architecture.

Get the book: Microservices Patterns

Read Chris Richardson's book:

Example microservices applications

Want to see an example? Check out Chris Richardson's example applications. See code

Remote consulting session

Got a specific microservice architecture-related question? For example:

  • Wondering whether your organization should adopt microservices?
  • Want to know how to migrate your monolith to microservices?
  • Facing a tricky microservice architecture design problem?

Consider signing up for a two hour, highly focussed, consulting session.

Virtual bootcamp: Distributed data patterns in a microservice architecture

My virtual bootcamp, distributed data patterns in a microservice architecture, is now open for enrollment!

It covers the key distributed data management patterns including Saga, API Composition, and CQRS.

It consists of video lectures, code labs, and a weekly ask-me-anything video conference repeated in multiple timezones.

The regular price is $395/person but use coupon ILFJODYS to sign up for $95 (valid until March 12, 2024). There are deeper discounts for buying multiple seats.

Learn more

Learn how to create a service template and microservice chassis

Take a look at my Manning LiveProject that teaches you how to develop a service template and microservice chassis.

Signup for the newsletter


BUILD microservices

Ready to start using the microservice architecture?

Consulting services

Engage Chris to create a microservices adoption roadmap and help you define your microservice architecture,


The Eventuate platform

Use the Eventuate.io platform to tackle distributed data management challenges in your microservices architecture.

Eventuate is Chris's latest startup. It makes it easy to use the Saga pattern to manage transactions and the CQRS pattern to implement queries.

ASSESS your architecture

Assess your application's microservice architecture and identify what needs to be improved.

Consulting services

Engage Chris to conduct an architectural assessment.



Join the microservices google group

Topics

Note: tagging is work-in-process

DDD   ·  GitOps   ·  Microservices adoption   ·  ancient lore   ·  anti-patterns   ·  application api   ·  application architecture   ·  architecting   ·  architecture   ·  architecture documentation   ·  assemblage   ·  beer   ·  books   ·  containers   ·  dark energy and dark matter   ·  deployment   ·  deployment pipeline   ·  design-time coupling   ·  developer experience   ·  development   ·  devops   ·  docker   ·  eventuate platform   ·  generative AI   ·  glossary   ·  health   ·  hexagonal architecture   ·  implementing commands   ·  implementing queries   ·  inter-service communication   ·  kubernetes   ·  loose coupling   ·  microservice architecture   ·  microservice chassis   ·  microservices adoption   ·  microservices rules   ·  microservicesio updates   ·  modular monolith   ·  multi-architecture docker images   ·  observability   ·  pattern   ·  refactoring to microservices   ·  resilience   ·  sagas   ·  security   ·  service api   ·  service architecture   ·  service blueprint   ·  service collaboration   ·  service design   ·  service discovery   ·  service granularity   ·  service template   ·  software delivery metrics   ·  success triangle   ·  tacos   ·  team topologies   ·  testing   ·  transaction management   ·  transactional messaging

All content