微服务架构咨询和培训服务

本站点由 Chris Richardson 编写和维护,他是经典技术著作《POJOS IN ACTION》一书的作者,也是 cloudfoundry.com 最初的创始人。Chris 的研究领域包括 Spring、Scala、微服务架构设计、领域驱动设计、NoSQL 数据库、分布式数据管理、事件驱动的应用编程等。Chris 是一位连续创业者,eventuate.io 是他的最新创业项目,一个微服务应用和数据服务平台。

Chris 定期为企业提供微服务设计培训和实战项目的架构咨询服务。近年来 Chris 多次访问中国,为包括华为、SAP、惠普、东风汽车等大型企业提供微服务架构相关的技术咨询服务。如您希望与 Chris 深入交流,建立合作,请点击下方按钮跟他取得联系。

预约课程

微服务应用的示例代码

为了避免纸上谈兵,Chris 提供了一套与这些模式相关的示例代码。这组代码使用 eventuate 框架,实现了微服务架构下分布式数据的存取。请点击下方按钮访问。

访问代码


模式库

核心模式

服务拆分

部署模式

需要关注的边界问题

通讯模式

数据管理

安全模式

可测试性

可观测性

UI 模式


订阅微服务邮件列表

全新的微服务应用支撑平台,成功解决微服务架构下分布式数据管理的难题。

了解更多

加入 微服务架构的 Google 讨论组(需要翻墙)

Pattern: Microservice chassis

Context

When you start the development of an application you often spend a significant amount of time putting in place the mechanisms to handle cross-cutting concerns. Examples of cross-cutting concern include:

  • Externalized configuration - includes credentials, and network locations of external services such as databases and message brokers
  • Logging - configuring of a logging framework such as log4j or logback
  • Health checks - a url that a monitoring service can “ping” to determine the health of the application
  • Metrics - measurements that provide insight into what the application is doing and how it is performing

As well as these generic cross-cutting concerns, there are also cross-cutting concerns that are specific to the technologies that an application uses. Applications that use infrastructure services such as databases or a message brokers require boilerplate configuration in order to do that. For example, applications that use a relational database must be configured with a connection pool. Web applications that process HTTP requests also need boilerplate configuration.

It is common to spend one or two days, sometimes even longer, setting up these mechanisms. If you going to spend months or years developing a monolithic application then the upfront investment in handling cross-cutting concerns is insignificant. The situation is very different, however, if you are developing an application that has the microservice architecture. There are tens or hundreds of services. You will frequently create new services, each of which will only take days or weeks to develop. You cannot afford to spend a few days configuring the mechanisms to handle cross-cutting concerns. What is even worse is that in a microservice architecture there are additional cross-cutting concerns that you have to deal with including service registration and discovery, and circuit breakers for reliably handling partial failure.

Forces

  • Creating a new microservice should be fast and easy
  • When creating a microservice you must handle cross-cutting concerns such as externalized configuration, logging, health checks, metrics, service registration and discovery, circuit breakers. There are also cross-cutting concerns that are specific to the technologies that the microservices uses.

Solution

Build your microservices using a microservice chassis framework, which handles cross-cutting concerns

Example

Examples of microservice chassis frameworks:

Resulting context

The major benefit of a microservice chassis is that you can quickly and easy get started with developing a microservice.

You need a microservice chassis for each programming language/framework that you want to use. This can be an obstacle to adopting a new programming language or framework.

Related patterns

There are the following related patterns:

  • Microservices - this pattern motivates the need for the Microservice Chassis pattern
  • Self Registration - the microservice chassis is often responsible for registering the service with the service registry
  • Client-side discovery - the microservice chassis is often responsible for client-side service discovery
  • Circuit Breaker - the microservice chassis framework might implement this pattern

Tweet
© 2017 Chris Richardson 版权所有 • 保留一切权利 • 本站由 Kong 提供支持.