Let’s imagine you are developing an online store application using the Microservice architecture pattern.
Most services need to persist data in some kind of database.
For example, the Order Service
stores information about orders and the Customer Service
stores information about customers.
What’s the database architecture in a microservices application?
Services must be loosely coupled so that they can be developed, deployed and scaled independently
Some business transactions must enforce invariants that span multiple services.
For example, the Place Order
use case must verify that a new Order will not exceed the customer’s credit limit.
Other business transactions, must update data owned by multiple services.
Some business transactions need to query data that is owned by multiple services.
For example, the View Available Credit
use must query the Customer to find the creditLimit
and Orders to calculate the total amount of the open orders.
Some queries must join data that is owned by multiple services. For example, finding customers in a particular region and their recent orders requires a join between customers and orders.
Databases must sometimes be replicated and sharded in order to scale. See the Scale Cube.
Different services have different data storage requirements. For some services, a relational database is the best choice. Other services might need a NoSQL database such as MongoDB, which is good at storing complex, unstructured data, or Neo4J, which is designed to efficiently store and query graph data.
Use a (single) database that is shared by multiple services. Each service freely accesses data owned by other services using local ACID transactions.
The OrderService
and CustomerService
freely access each other’s tables.
For example, the OrderService
can use the following ACID transaction ensure that a new order will not violate the customer’s credit limit.
BEGIN TRANSACTION
…
SELECT ORDER_TOTAL
FROM ORDERS WHERE CUSTOMER_ID = ?
…
SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = ?
…
INSERT INTO ORDERS …
…
COMMIT TRANSACTION
The database will guarantee that the credit limit will not be exceeded even when simultaneous transactions attempt to create orders for the same customer.
The benefits of this pattern are:
The drawbacks of this pattern are:
Development time coupling - a developer working on, for example, the OrderService
will need to coordinate schema changes with the developers of other services that access the same tables.
This coupling and additional coordination will slow down development.
Runtime coupling - because all services access the same database they can potentially interfere with one another.
For example, if long running CustomerService
transaction holds a lock on the ORDER
table then the OrderService
will be blocked.
Single database might not satisfy the data storage and access requirements of all services.
Microservices.io is brought to you by Chris Richardson. Experienced software architect, author of POJOs in Action, the creator of the original CloudFoundry.com, and the author of Microservices patterns.
Chris helps clients around the world adopt the microservice architecture through consulting engagements, and training workshops.
Chris teaches comprehensive workshops for architects and developers that will enable your organization use microservices effectively.
Avoid the pitfalls of adopting microservices and learn essential topics, such as service decomposition and design and how to refactor a monolith to microservices.
Learn moreChris offers numerous other resources for learning the microservice architecture.
Want to see an example? Check out Chris Richardson's example applications. See code
Got a specific microservice architecture-related question? For example:
Consider signing up for a two hour, highly focussed, consulting session.
My virtual bootcamp, distributed data patterns in a microservice architecture, is now open for enrollment!
It covers the key distributed data management patterns including Saga, API Composition, and CQRS.
It consists of video lectures, code labs, and a weekly ask-me-anything video conference repeated in multiple timezones.
The regular price is $395/person but use coupon MECNPWNR to sign up for $120 (valid until May 16th, 2023). There are deeper discounts for buying multiple seats.
Take a look at my Manning LiveProject that teaches you how to develop a service template and microservice chassis.
Engage Chris to create a microservices adoption roadmap and help you define your microservice architecture,
Use the Eventuate.io platform to tackle distributed data management challenges in your microservices architecture.
Eventuate is Chris's latest startup. It makes it easy to use the Saga pattern to manage transactions and the CQRS pattern to implement queries.
Engage Chris to conduct an architectural assessment.
Note: tagging is work-in-process
anti-patterns · application api · application architecture · architecting · architecture documentation · assemblage · beer · containers · dark energy and dark matter · deployment · design-time coupling · development · devops · docker · eventuate platform · glossary · hexagonal architecture · implementing commands · implementing queries · inter-service communication · kubernetes · loose coupling · microservice architecture · microservice chassis · microservices adoption · microservicesio updates · multi-architecture docker images · observability · pattern · refactoring to microservices · resilience · sagas · security · service api · service collaboration · service design · service discovery · service granularity · service template · software delivery metrics · success triangle · tacos · team topologies · transaction management · transactional messaging
Application architecture patterns
Decomposition
Refactoring to microservicesnew
Data management
Transactional messaging
Testing
Deployment patterns
Cross cutting concerns
Communication style
External API
Service discovery
Reliability
Security
Observability
UI patterns