pattern   service design  

Pattern: Externalized configuration

Context

An application typically uses one or more infrastructure and 3rd party services. Examples of infrastructure services include: a Service registry, a message broker and a database server. Examples of 3rd party services include: payment processing, email and messaging, etc.

Problem

How to enable a service to run in multiple environments without modification?

Forces

  • A service must be provided with configuration data that tells it how to connect to the external/3rd party services. For example, the database network location and credentials
  • A service must run in multiple environments - dev, test, qa, staging, production - without modification and/or recompilation
  • Different environments have different instances of the external/3rd party services, e.g. QA database vs. production database, test credit card processing account vs. production credit card processing account

Solution

Externalize all application configuration including the database credentials and network location. On startup, a service reads the configuration from an external source, e.g. OS environment variables, etc.

Examples

Spring Boot externalized configuration reads values from a variety of sources including operating system environment variables, property files and command line arguments. These values are available within the Spring application context.

RegistrationServiceProxy from the Microservices Example application is an example of a component, which is written in Scala, is configured with the variable user_registration_url:


@Component
class RegistrationServiceProxy @Autowired()(restTemplate: RestTemplate) extends RegistrationService {

  @Value("${user_registration_url}")
  var userRegistrationUrl: String = _

The docker-compose.yml file supplies its value as an operating system environment variable:

web:
  image: sb_web
  ports:
    - "8080:8080"
  links:
    - eureka
  environment:
    USER_REGISTRATION_URL: http://REGISTRATION-SERVICE/user

REGISTRATION-SERVICE is the logical name of the service. It is resolved using Client-side discovery.

Resulting Context

This pattern has the following benefits:

  • The application runs in multiple environments without modification and/or recompilation

There are the following issues with this pattern:

  • How to ensure that when an application is deployed the supplied configuration matches what is expected?

pattern   service design  


Copyright © 2024 Chris Richardson • All rights reserved • Supported by Kong.

About Microservices.io

Microservices.io is brought to you by Chris Richardson. Experienced software architect, author of POJOs in Action, the creator of the original CloudFoundry.com, and the author of Microservices patterns.

Chris helps organizations improve agility and competitiveness through better software architecture. Learn more about his consulting engagements, and training workshops.

PREMIUM CONTENT

Premium content and office hours is now available for paid subscribers at premium.microservices.io.

MICROSERVICES WORKSHOPS

Chris teaches comprehensive workshops for architects and developers that will enable your organization use microservices effectively.

Avoid the pitfalls of adopting microservices and learn essential topics, such as service decomposition and design and how to refactor a monolith to microservices.

Learn more

LEARN about microservices

Chris offers numerous other resources for learning the microservice architecture.

Get the book: Microservices Patterns

Read Chris Richardson's book:

Example microservices applications

Want to see an example? Check out Chris Richardson's example applications. See code

Remote consulting session

Got a specific microservice architecture-related question? For example:

  • Wondering whether your organization should adopt microservices?
  • Want to know how to migrate your monolith to microservices?
  • Facing a tricky microservice architecture design problem?

Consider signing up for a two hour, highly focussed, consulting session.

Virtual bootcamp: Distributed data patterns in a microservice architecture

My virtual bootcamp, distributed data patterns in a microservice architecture, is now open for enrollment!

It covers the key distributed data management patterns including Saga, API Composition, and CQRS.

It consists of video lectures, code labs, and a weekly ask-me-anything video conference repeated in multiple timezones.

The regular price is $395/person but use coupon ILFJODYS to sign up for $95 (valid until March 12, 2024). There are deeper discounts for buying multiple seats.

Learn more

Learn how to create a service template and microservice chassis

Take a look at my Manning LiveProject that teaches you how to develop a service template and microservice chassis.

Signup for the newsletter


BUILD microservices

Ready to start using the microservice architecture?

Consulting services

Engage Chris to create a microservices adoption roadmap and help you define your microservice architecture,


The Eventuate platform

Use the Eventuate.io platform to tackle distributed data management challenges in your microservices architecture.

Eventuate is Chris's latest startup. It makes it easy to use the Saga pattern to manage transactions and the CQRS pattern to implement queries.

ASSESS your architecture

Assess your application's microservice architecture and identify what needs to be improved.

Consulting services

Engage Chris to conduct an architectural assessment.



Join the microservices google group

Topics

Note: tagging is work-in-process

DDD   ·  GitOps   ·  Microservices adoption   ·  ancient lore   ·  anti-patterns   ·  application api   ·  application architecture   ·  architecting   ·  architecture   ·  architecture documentation   ·  assemblage   ·  beer   ·  books   ·  containers   ·  dark energy and dark matter   ·  deployment   ·  deployment pipeline   ·  design-time coupling   ·  developer experience   ·  development   ·  devops   ·  docker   ·  eventuate platform   ·  generative AI   ·  glossary   ·  health   ·  hexagonal architecture   ·  implementing commands   ·  implementing queries   ·  inter-service communication   ·  kubernetes   ·  loose coupling   ·  microservice architecture   ·  microservice chassis   ·  microservices adoption   ·  microservices rules   ·  microservicesio updates   ·  modular monolith   ·  multi-architecture docker images   ·  observability   ·  pattern   ·  refactoring to microservices   ·  resilience   ·  sagas   ·  security   ·  service api   ·  service architecture   ·  service blueprint   ·  service collaboration   ·  service design   ·  service discovery   ·  service granularity   ·  service template   ·  software delivery metrics   ·  success triangle   ·  tacos   ·  team topologies   ·  testing   ·  transaction management   ·  transactional messaging

All content