About Microservices.io

Microservices.io is brought to you by Chris Richardson. Experienced software architect, author of POJOs in Action, the creator of the original CloudFoundry.com, and the author of Microservices patterns.

Chris helps clients around the world adopt the microservice architecture through consulting engagements, and training classes and workshops.

Signup for the newsletter

LEARN about microservices

Chris offers numerous resources for learning the microservice architecture.

Training classes

Chris teaches comprehensive workshops and training classes for executives, architectures and developers to help your organization use microservices effectively. Learn how to avoid the pitfalls of adopting microservices and learn essential topics, such as service decomposition and design and Kubernetes.

Get the book: Microservice patterns

Read Chris Richardson's book:

Example microservices applications

Want to see an example? Check out Chris Richardson's example applications. See code

BUILD microservices

Ready to start using the microservice architecture?

Consulting services

Engage Chris to create a microservices adoption roadmap and help you define your microservice architecture,

The Eventuate platform

Use the Eventuate.io platform to tackle distributed data management challenges in your microservices architecture.

Eventuate is Chris's latest startup. It makes it easy to use the Saga pattern to manage transactions and the CQRS pattern to implement queries.

ASSESS your architecture

Assess your application's microservice architecture and identify what needs to be improved.

Consulting services

Engage Chris to conduct an architectural assessment.

Self assessment

Alternatively, conduct a self-assessment using the Microservices Assessment Platform.

Join the microservices google group

Pattern: Messaging


You have applied the Microservice architecture pattern. Services must handle requests from the application’s clients. Furthermore, services often collaborate to handle those requests. Consequently, they must use an inter-process communication protocol.



Use asynchronous messaging for inter-service communication. Services communicating by exchanging messages over messaging channels.

There are several different styles of asynchronous communication:

  • Request/response - a service sends a request message to a recipient and expects to receive a reply message promptly
  • Notifications - a sender sends a message a recipient but does not expect a reply. Nor is one sent.
  • Request/asynchronous response - a service sends a request message to a recipient and expects to receive a reply message eventually
  • Publish/subscribe - a service publishes a message to zero or more recipients
  • Publish/asynchronous response - a service publishes a request to one or recipients, some of whom send back a reply


There are numerous examples of asynchronous messaging technologies

OrderService from the FTGO Example application publishes an Order Created event when it creates an Order.

public class OrderService {


  public Order createOrder(long consumerId, long restaurantId,
                           List<MenuItemIdAndQuantity> lineItems) {
    Restaurant restaurant = restaurantRepository.findById(restaurantId)
            .orElseThrow(() -> new RestaurantNotFoundException(restaurantId));

    List<OrderLineItem> orderLineItems = makeOrderLineItems(lineItems, restaurant);

    ResultWithDomainEvents<Order, OrderDomainEvent> orderAndEvents =
            Order.createOrder(consumerId, restaurant, orderLineItems);

    Order order = orderAndEvents.result;

    orderAggregateEventPublisher.publish(order, orderAndEvents.events);

    OrderDetails orderDetails = new OrderDetails(consumerId, restaurantId, orderLineItems, order.getOrderTotal());

    CreateOrderSagaState data = new CreateOrderSagaState(order.getId(), orderDetails);
    createOrderSagaManager.create(data, Order.class, order.getId());

    meterRegistry.ifPresent(mr -> mr.counter("placed_orders").increment());

    return order;

Resulting context

This pattern has the following benefits:

  • Loose runtime coupling since it decouples the message sender from the consumer
  • Improved availability since the message broker buffers messages until the consumer is able to process them
  • Supports a variety of communication patterns including request/reply, notifications, request/async response, publish/subscribe, publish/async response etc

This pattern has the following drawbacks:

  • Additional complexity of message broker, which must be highly available

This pattern has the following issues:

  • Request/reply-style communication is more complex

See also

Copyright © 2019 Chris Richardson • All rights reserved • Supported by Kong.